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Abstract 
Symmetry plane calculation is used in fracture reduction or reconstruction in the midface. Estimating a reliable symmetry 
plane without advanced anatomic knowledge is the most critical challenge. In this work, we developed a new automated 
method to find the mid-plane in CT images of an intact skull and a skull with a unilateral midface fracture. By use of a 3D 
point-cloud of a skull, we demonstrate that the proposed algorithm could find a mid-plane that meets clinical criteria. There 
is no need for advanced anatomical knowledge through the use of this algorithm. The algorithm used principal component 
analysis to find the initial plane. Then the rotation matrix, derived from an iterative closest point (ICP) registration method, 
is used to update the normal vector of the plane and find the optimum symmetry plane. A mathematical index, Hausdorff 
distance (HD), is used to evaluate the similarity of one mid-plane side in comparison to the contralateral side. HD decreased 
by 66% in the intact skull and 65% in a fractured skull and converged in just six iterations. High convergence speed, low 
computational load, and high accuracy suggest the use of the algorithm in the planning procedure. This easy-to-use algorithm 
with its advantages, as mentioned above, could be used as an operator in craniomaxillofacial software.
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Introduction

Accurate symmetric plane restoration plays a crucial role 
in unilateral fracture reduction and skeletal reconstruc-
tion planning [1]. The symmetry plane, also known as the 
midsagittal plane, is essential for a patient-specific implant 
design procedure and orthognathic surgery planning [2, 3]. 
Quantifying the precise symmetry plane is a controversial 
issue in computer-aided surgical simulation (CASS), as no 
gold standard exists [3–7]. The symmetry plane that is used 
in CASS is estimated manually, based on anatomic land-
marks. This approach requires advanced anatomical knowl-
edge and is time-consuming. Presently, the development 
of an automatic method for calculating a symmetry plane 
remains a challenge [9].

There are two substantial problems. The first is how to 
estimate the most appropriate symmetry plane to halve the 
skull evenly, and the second is how to assess the accuracy 
quantitatively. The ideal symmetry plane divides the skull 
into two mirror halves. However, a real skull is never truly 
symmetrical. Depending on the searching strategy, different 
symmetry planes could be acceptable. Thus, we are seeking 
the optimum midplane with minimal errors of symmetry; 
additionally, clinical criteria must be approved.

Several studies investigated these challenges [1–12]. 
Cevidanes et al. quantified the extent of the asymmetry of the 
mandibular using two different approaches [1]. In the first 
approach, they found the symmetry plane through manually 
chosen anatomic landmarks. In the second one, an arbitrary 
mirrored skull model was registered on the original skull 
thorough a rigid voxel-based method. The authors reported 
that the results of the first method are more acceptable than 
the second. However, the landmarks could be obscured by 
trauma or disorders such as tumour-removal surgery. Since 
manual selection of landmarks is not desirable, this method 
could not be used in many craniomaxillofacial reconstruc-
tions. They believed the second method is less subjective 
and could present acceptable results. The idea of finding the 
symmetry plane in this research is admirable, but the method 
suffers from a lack of a reliable validation routine.

Berlin et al. investigated 2D-asymmetry analysis tech-
niques [12]. They categorised symmetry-analysis methods 
based on different lines and anatomic points on the face 
image. It is not possible to find the best symmetry plane 
using 2D data from the facial image individually, espe-
cially in prosthesis design procedures. Li et al. suggested a 
principal component analysis (PCA) based on an adaptive 
minimum-Euclidean-distance (PAMED) approach to find an 

optimal object reference frame for the symmetrical align-
ment of the dental arch during CASS [3]. They showed that 
standard PCA is not reliable for symmetry-plane estimation 
since it is vulnerable to noise and outliers. The proposed 
method could address the shortcomings of PCA, even for 
missing teeth. To this end, the Y-axis is defined as perpen-
dicular to the line on the X-axis that connects two corre-
sponding landmarks on the left and right side of the dental 
arch, e.g. tip of the left and right canines, in the axial plane. 
Firstly, the PCA is used to find the initial symmetry plane. 
Then, all points are projected onto the X–Y plane. Now, if 
the Y-axis moves to the right or left in the X–Y plane, then 
the symmetry plane (Y–Z plane) is adjusted and deviation 
of the initial plane is compensated. This is done until the 
Euclidian distance between a minimum of two side-points 
is achieved. The PAMED method is designed for symmetri-
cal alignment of the dental arch for orthognathic surgery 
planning. This method is suitable for the dental arch but 
could not be generalised for the skull symmetry plane, since 
manual landmark selection in the skull is not always feasi-
ble, as explained previously. Moreover, dimension reduction 
(Z-axis) in the skull causes loss of beneficial information. 
Furthermore, by asking three experts to opine, an utterly 
subjective methodology was used for the evaluation of the 
symmetry plane. Martini et al. determined the symmetry 
axis and examined the quantity of asymmetry mathemati-
cally in patients with craniosynostosis [10]. Their proposed 
method was based on 3D-scanned soft-tissue data and the 
landmark-based 3D analysis. A symmetry axis is defined 
by anatomical landmark pairs. Then the distance from the 
landmarks to the line is calculated. The symmetry plane is 
estimated from the symmetry axis. In order to minimise the 
perpendicular distance of landmark pairs from the symmetry 
axis, the symmetry axis algorithm was moved. The particu-
lar kind of method conducted in this work was simple and 
easy to implement, although it was depended on accurate 
anatomical landmarks. Bockey et al. developed an asymme-
try index (AI) [2]. AI is based on the mean distance between 
the original and the mirrored set. The diagonal of the bound-
ing box of the face is used to normalise faces of different 
sizes. They used AI retrospectively in patients with orbital 
defects. AI shown better results when a healthy surface is 
mirrored on the side of the defect, in comparison with using 
a digitally computer-aided design template. The analysis was 
based on 3D facial data recorded optically. Although optical 
data is exposed to no radiation, there are always some facial 
areas that remain unrecorded. Additionally, the 3D model 
from CT images allows us to make a precise observation of 
different views and to highlight vital structures.
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The avoidance of manual landmark selection and sym-
metry-plane estimation is an ongoing challenge. Another 
is the objective evaluation of the suggested plane. This 
research aims to develop an automated method based on 
an iterative process by minimising the error-index of the 
symmetry plane. Analytical data processing is performed 
on 3D point-sets, derived from CT images. Firstly, an initial 
symmetry plane estimated by the PCA and skull point-set 
was divided into two groups by the plane. Then, the ICP reg-
istration method was used to match two point-sets. Our main 
contribution was to use the rotation matrix derived from 
the registration method to correct the initial symmetry plan 
automatically. Finally, we suggest this technique for finding 
a symmetry plane in both intact and simple fractured skull 
cases. Craniomaxillofacial reconstruction and orthognathic 
surgery planning would be within the scope of our research.

In the following sections, firstly, we describe datasets that 
are used. Subsequently, we explain the different steps of the 
proposed algorithm. Then, the results obtained from intact 
and fractured skull CT datasets are reported. Finally, the 
discussion is placed.

Materials and methods

Datasets

Computed tomography (CT) images of 15 intact bones were 
taken from Parseh Intelligent Surgical System Co. datasets, 
Tehran, Iran. The patients ranged in age from 22 to 59 years 
with an average age of 34.5 ± 15.32 years. The slice thick-
ness of images was equal to or less than 1 mm. Another set 
of CT images from seven patients with unilateral midface 
fractures were taken from the radiology department, Sina 
Hospital, Tehran University of Medical Science (TUMS), 
Tehran, Iran. Patients ranged in age from 21 to 56 years, 
with an average age of 32.71 ± 13.35 years. The slice thick-
ness of images was about 1 mm. All CT image files were 
in digital-imaging communications in medicine (DICOM) 
format, obtained from the head and some vertebrae of each 
individual.

Method

The flowchart of the proposed method is shown in Fig. 1. 
The procedure starts with the pre-processing section. First 
of all, CT images were imported into the 3D slicer, open-
source software, to analyse and visualise the information 
derived from medical images [13]. After bone segmentation, 
the bone data was exported as a stereolithography (STL) file. 
This file includes vertices and faces to describe the skull 
information. Vertebrae were omitted. The computations 
were done using MATLAB 2017b (The MathWorks, Inc, 

Natick, MA) and implemented on a Core i5 CPU, 3.00 GHz 
with 16 GB Ram.

Principle component analysis (PCA)

PCA is a powerful tool for structural statistical model-anal-
ysis in many fields [14]. The central concept and function 
of PCA is to reduce the dimensionality of a dataset, accord-
ing to the vectors with the greatest quantity of information 
(principal components) or variance. Hence, two main out-
puts that come from PCA are eigenvectors (main directions), 
and eigenvalues (magnitude of variation).

After pre-processing, PCA is applied to the point-set of 
3D data. Therefore, three eigenvalues and eigenvectors are 
provided. The centre of mass of the skull is calculated by 
averaging all skull landmark points. Because of the intrin-
sic properties of the human skull, the plane contained two 
eigenvectors with larger eigenvalues, and also the centre of 

Fig. 1  Flowchart of the proposed method for precise symmetry plane 
estimation of the skull
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mass of the skull could be an initial estimation for the loca-
tion of the symmetry plane. Figure 2 shows these data.

The symmetry plane divides data-points into left and 
right point-groups. Then, the right point-group reflects on 
the contralateral side through the symmetry plane. The dis-
tance between the point-groups on each side determines 
the error-index of the symmetry plane. The error-index is 
calculated through Hausdorff Distance (HD). PCA does an 
excellent job of finding the coarsely-tuned symmetry plane. 
Then we performed further processes to find the best fine-
tuned plane.

Point set registration (PSR)

In the PSR procedure, a spatial transformation is computed 
in order to match two point-sets. PSR is used in pattern rec-
ognition and computer vision for many medical applications, 
such as compensation of tissue deformation and statistical 
shape models [15–17]. The PSR process consists of both 
rigid and non-rigid registration. In rigid registration, trans-
formation terms are translation vector, rotation matrix, and 
sometimes scaling factor. Transformation of a non-rigid reg-
istration contains nonlinear deformations [18].

One of the most popular PSR algorithms is the Itera-
tive Closest Point (ICP) [19, 20]. The central assumption 
of this algorithm is that the closest point-pairs between 
source and model point-sets correspond with each other. 
The conventional ICP algorithm works for rigid transfor-
mation problems. The ICP algorithm finds corresponding 
point-pairs in the model (M) and the source (S) point-set. 
Then, it computes a transformation matrix in order to mini-
mise the distance of corresponding point-pairs. Error in the 
ICP algorithm is calculated in the way of point-to-point 

measurement. The main minimisation problem is shown 
below:

where  mi = (mix,  miy,  miz)T ∈ M and sj = (sjx,  sjy,  sjz)T ∈ S 
arrange a correspondence pair, NM and NS states the number 
of points in M and S, respectively, and ωi,j are the weights 
for a pair. In a conventional ICP algorithm, if the pair corre-
spond, ωi,j = 1, otherwise ωi,j = 0. Also, R , a 3 × 3 matrix, and 
t , a 3D vector, stand for rotation and translation respectively. 
Since the ICP algorithm was introduced [19, 20], different 
variations of the ICP algorithm have been developed based 
on its fundamental concept [21]. In the following, some 
effective stages of the ICP algorithm are described.

Subsampling The number of landmark points in each set is 
an essential parameter for computational complexity. There 
are various methods to reduce the number of landmarks 
while preserving crucial information [22]. In these cases, 
each dataset contains many faces (a triangulate flat surface 
that connects every three vertices), edges (where two faces 
meet), and vertices (a corner where edges meet). Vertices 
are points in 3D space that embody the skull. The number of 
faces and vertices in the dataset was about 650,000–850,000 
and 325,000–425,000, respectively. We define the reduction 
factor as the detraction of the number of faces so that the 
number of edges and vertices is decreased. The reduction 
factor was increased until ICP results were preserved.

Point distance measurement In the conventional ICP, the 
correspondence of each point is chosen by measuring the 

(1)E(R, t) =

NM∑

i=1

NS∑

j=1

�i,j||mi −
(
Rsj + t

)
||2

Fig. 2  Point set of an intact skull with two principal eigenvectors (green and red arrow) and centre of mass of data (dark red point)
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distance from all other points [19]. Therefore, the compu-
tation is too complex and time consuming. The kD-tree 
method could accelerate the correspondence process. KD-
tree stands for a k-Dimension tree, which is a multidimen-
sional binary search tree for storing information that can be 
retrieved by associative searches [23]. Each leaf node is a 
k-dimensional point, and each non-leaf node is a dividing 
plane (in 3D space) that partitions spaces into two segments, 
named half-spaces. The points placed to the right side of the 
plane comprise the right subtree of that node, and the points 
placed to the left side of the plane comprise the left sub-
tree. Each node in the tree is related to one of the k dimen-
sions. The plane direction is perpendicular to the axis of the 
dimension [23, 24]. Based on these node properties, the tree 
is constructed.

The kD-tree structure is exploited by the ICP algorithm 
to find corresponding point-pairs. By using the K-nearest 
neighbour (KNN) algorithm, it is possible to retrieve the 
closest data-point to the point to be queried in the kD-tree. 
KNN queries are regularly applied to multidimensional 
spaces [25]. They found K closest points to a query-point, 
based on distance criteria. Here K equals unit, as the closest 
point of query point is retrieved. In each iteration of the ICP 
algorithm, when the source is aligned onto the model, the 
kD-tree structure is applied to the data. Then, the nearest 
point-pairs are found.

Update symmetry plane

The main idea of our method is to use the rotational angle 
derived from the rotation matrix to update the symmetry 
plane. In the first iteration, the symmetry plane contains the 
centre of mass, and two principal eigenvectors come from 
PCA. In the next iterations, skull landmarks are divided into 
left and right point-groups. The left point-group is mirrored 
to the contralateral side through the plane. Then the right 
side-point group is considered to be the model and the mir-
rored left side point-group is considered to be the source. 
Next, the source data is registered to the model by the ICP 
algorithm and the rotation matrix is calculated. The rotation 
matrix is converted to an axis–angle rotation representation 
through Euler’s rule. Axis–angle representation contains a 
unit vector indicating the direction of the rotation axis, and 
an angle stands for the rotation magnitude about the axis. We 
define a new axis–angle rotation as follows:

where axisi and anglei show direction and magnitude of the 
rotation axis in ith iteration, respectively. η is a convergence 
coefficient. We used η = 0.9, obtained heuristically. A nega-
tive sign is used since we want to compensate for the amount 

(2)
(axisi+1, anglei+1) = (−axisi, −𝜂 × anglei); 0 < 𝜂 < 1

of rotation between the two groups. After reconversion of 
the new axis–angle rotation to a rotation matrix, the orienta-
tion of eigenvalues can be updated as follows:

where Evi and Ri
T are eigenvector and transposition of the 

rotation matrix of ith iteration, respectively. As Fig. 1 shows, 
a new symmetry plane is calculated by newly adjusted eigen-
vectors. Applying this idea results in a significant reduc-
tion in point-set registration errors in the next iteration. We 
assumed that in the ideal skull, the symmetry plane always 
contains the centre of mass point. Hence, after initialising 
the symmetry plane, only the rotation matrix is needed in 
order to fine-tune the plane. Therefore, there is no need to 
use the translate vector from the ICP in the tuning procedure.

Symmetry plane evaluation

Accuracy quantification of the estimated symmetry plane 
could be done with a variety of mathematical distance meas-
ures. It is assumed that an ideal symmetry plane splits the 
skull into two similar point-groups. Then two point-groups 
could be matched optimally by reflecting one group in the 
symmetry plane. The distance between the reflected point-
group and the other one could be a useful error index. One-
sided HD is one of the most reliable measures of symmetry 
between two point-groups and is used widely in computa-
tional geometry [26]. Ghadimi et al. developed a segmen-
tation method from CT images of newborn babies [27]. 
They used the HD method to compare manually segmented 
images with the images segmented by their segmentation 
method. One-sided HD ( dHD ) is calculated as follows:

where A and B are two point groups, and ‖.‖ is the Euclid-
ian distance.

In the proposed method, the number of iterations, N, is 
the stopping criteria. N is chosen to be 10, empirically.

Results

To evaluate the ICP algorithm method, we used 15 datasets 
from intact skulls. In order to know the optimum factor of 
data sampling, different reduction factors, r, were evaluated 
heuristically. The HD is plotted for different r in Fig. 3. The 
ICP algorithm was run for 100 iterations.

Since the algorithm converged after six iterations, the 
time consumed by the ICP algorithm in the sixth itera-
tion was recorded for different r in Table 1. The ICP time 
consumption slumped when the r reduced. From Fig. 3 
and Table  1 it can be concluded that if r = 0.075, the 

(3)Evi+1 = Evi × RT
i+1

(4)dHD(A.B) = max
a∈A

(min
b∈B

||a − b||)
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best results concerning HD and time losses conducted 
are achieved. The elapsed CPU time used by the overall 
algorithm for r = 0.2 and r = 0.075 is 78,350 and 10,590, 
respectively.

Instead of the conventional ICP algorithm, we ran the 
algorithm with kD-tree, r = 0.075, and compared the ICP 
performance in the sixth iteration. The run-time was reduced 
by about 99 times. The run-time and HD of five intact skulls 
were inserted into Table 2. We improved the conventional 

ICP algorithm by use of kD-tree and named it proposed 
ICP algorithm. A comparison between run-time and HD in 
the conventional and proposed ICP algorithms is shown in 
Table 2.

Visualisation of each iteration for one skull is complete. 
Figure  4 shows how an initial symmetry plane adjusts 
through iterations to reduce HD. In Fig. 4a and b, X–Y and 
X–Z views are captured, respectively. Figure 5a indicates 
how the symmetry plane halves skull data in each iteration 
(X–Y view). Figure 5b visualises the right side of the skull 
and the mirror of the contralateral side in the X–Y view. 
Figure 6 demonstrates how the calculated symmetry plane 
halves data in axial, coronal, and 3D views. It is notable that 
the first plot of Figs. 4, 5, 6 and 7 implies an initial sym-
metry plane calculated by PCA, and the others are updated 
versions calculated by the ICP algorithm.

We applied the proposed algorithm on seven datasets from 
patients with midface fractures. The results were similar to 
the intact-skull data, and the initial HD decreased around 
65% after six iterations. Figure 7 demonstrates how the cal-
culated symmetry plane halves data in axial, coronal, and 3D 
views for a fractured zygomatic arch. We show the rotational-
angle variations in different iterations for intact and fractured 
skulls in Fig. 8. For a comparison of HD values in intact and 
fractured skull data, the results are plotted in Fig. 9.

Discussion

Defining a symmetry plane is the key to apply the mirroring 
technique in CASS. There is no gold-standard, non-subjec-
tive method to estimate a symmetry plane. In this study, we 
propose a reliable, objective method for symmetry-plane cal-
culation, which requires no explicit anatomical knowledge. 

Fig. 3  Comparison of the effect 
of different reduction factors (r) 
on the Hausdorff distance (HD) 
values in each iteration. This is 
for a single subject

Table 1  ICP registration time 
consumption vs. reduction 
factor (r)

The best r value is shown in the 
bold

Reduction factor (r) ICP
time (s)

0.2 2124
0.1 445
0.075 280
0.050 135
0.025 40
0.01 6

Table 2  Run times and HD values in the conventional and proposed 
ICP algorithms for five intact skulls

Data # Conventional ICP Proposed ICP Vertices # 
(r = 0.075)

Run time 
(s)

HD (mm) Run time 
(s)

HD (mm)

280.14 8.57 2.75 8.57 30,583
191.45 7.50 2.11 7.50 22,413
270.60 6.81 2.80 6.81 30,240
258.31 6.50 2.42 6.50 29,705
220.63 7.32 2.26 7.32 24,985
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Since the proposed algorithm finds the symmetry plane in an 
unsupervised way, by simply importing proper pre-processed 
data, we named it an automatic algorithm.

The main contribution of this research is applying rota-
tions to the initially-captured PCA symmetry plane. First, 

the centre of mass point of skull landmarks is calculated. 
PCA is applied to the landmarks and eigenvectors are cal-
culated. So, the initial plane is estimated using the cen-
tre of mass and two main eigenvectors. Then, landmarks 
are divided into left and right point-groups, based on the 

Fig. 4  The estimated symmetry plane in each iteration reduces Hausdorff distance (HD) as an error index. a X–Y view is captured. b X–Z view 
is captured
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plane. The left point-group is mirrored to the contralateral 
side through the plane. Then, the ICP rigid-registration 
algorithm is used to align point-groups accurately. The 
rotation matrix from the ICP algorithm is used to derive 
rotation axis and angle. Then, the rotational angle is 

applied to the eigenvectors in a counter-clockwise way 
to compensate for the unwanted deviation of the symme-
try plane. The symmetry plane is rotated iteratively until 
the changes of the Hausdorff distance between the mir-
rored left and right point-group become negligible. The 

Fig. 5  Visualisation of updates in the symmetry plane. a Data split 
into two different point-groups that are on the left and right side of 
the symmetry plane, in each iteration (X–Y view is captured); b right 

side point group reflected through symmetry plane, in each iteration 
(X–Y view is captured)
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rotational angle in each iteration refines the symmetry-
plane deviation. As the noise and outliers make land-
marks more asymmetric, the symmetry plane deviation 
and rotational angle become larger. In the early iterations, 
the rotational angle compensates for global deviation, 
while in the last iterations, local deviations are refined. 
The effect of the rotational angle on the symmetry plane 
could be adjusted with a convergence coefficient ( � ). Since 
the ICP algorithm matches two point-groups as accurately 
as possible, the effect of noise and outliers will be filtered 
robustly.

If we put aside the stated assumptions and allow the tech-
nique to apply the reverse of the translate vector on the sym-
metry plane, then a considerable unwanted bias occurs in 
the symmetry plane. Hence, the bias infiltrates the left- and 
right-side point-groups in the next calculations. Afterwards, 
in the next iteration, the ICP algorithm results deviate abso-
lutely from the symmetry plane.

As demonstrated in the results, in just six iterations, 
HD decreased by around 66% in the intact skull (65% in 
simple unilateral midface fracture) and converged. The low 
number of iterations indicates that the symmetry plane 
could be found with a low computational load. Hausdorff 

distance (HD) could be a useful error index for symmetry-
plane evaluation [26]. When HD does not change signifi-
cantly, the algorithm converges and must be stopped. We 
can trace the variation of the angle of rotation matrix vs. 
iteration. The results show that these changes are consist-
ent with the HD curve.

PSR is done by the ICP algorithm with subsampling 
to decrease the computational load. The concept behind 
subsampling is to preserve the general shape [22]. The 
subsampling factor, r, affects the number of faces directly; 
consequently, the number of vertices is also changed. As 
the results showed, we could subsample initial input by 
a factor of 0.075 and the elapsed CPU time reduced 7.4 
times in comparison with r = 0.2. This is the most critical 
parameter for the ICP algorithm in this problem. If the 
reduction factor becomes smaller, then the HD is ruined 
and so the symmetry plane deviates.

In each iteration of the ICP algorithm, the distance 
between the corresponding point-pairs was updated to re-
estimate the registration parameters. We ran the algorithm 
with kD-tree, r = 0.075, and validated the ICP performance 
in the sixth iteration. The run time was reduced about 99 
times in comparison with the conventional ICP algorithm. 

Fig. 6  Symmetry plane computed for intact data resulted from the proposed algorithm (yellow line). a Symmetry plane in axial view, b symme-
try plane in coronal view, and c Symmetry plane in 3D view
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Li et al. claim that kD-tree improves registration accuracy 
on Magnolia point cloud data [28], but Table 2 shows that 
kD-tree does not affect HD and ICP error for our data-
sets. This could be because of the properties of the data 
organisation.

As Rusinkiewicz and Levoy indicated [21] and our results 
confirm, each variation of the ICP algorithm could be chosen 
for a specific application. The results show that a mixture 
consists of subsampling point-sets, and the use of kD-tree 
for matching points improved our results significantly, in 
comparison with the conventional ICP algorithm.

It is notable that, in the pre-processing stage, when ver-
tebrae exist in CT images, the head and neck may not be on 
the same plane. Since the head and neck have two different 
symmetry planes, the main symmetry plane will be missed. 
In such cases, we suggest eliminating neck vertebrae in pre-
processing. Also, metal artefacts in the patient’s teeth must 
be removed in the pre-processing stage.

As the results demonstrate, in a patient with a simple 
unilateral midface fracture, our method is robust enough to 
be used in order to find the best possible symmetry plane. 
Figure 7 demonstrates that the algorithm works well for 
simple unilateral fractures on the zygomatic arch. Also, it 
works well for the zygomatic bone, orbital rim, and ramus 
fractures. Indeed, the symmetry plane in fractures that do 
not transform data of the point-set dramatically could be 
found by the proposed algorithm. As Fig. 8 shows, the first 
rotational angle in the fractured skull may have a value 
approximately 60% higher than its corresponding angle in 
the intact skull, while in the last iterations the rotational 
angles became similar. This result shows the robustness of 
the proposed algorithm, from the ICP registration and the 
fact of it being iterative. In each iteration, the ICP algorithm 
compensates for symmetry-plane deviation and after a few 
iterations, the algorithm converges to an acceptable sym-
metry plane. Figure 9 shows that the final value of HD in 
intact and fractured skulls are similar and the difference is 
negligible.

Our method is simple and easy to implement. Imple-
mented codes in MATLAB are available to share with 
researchers. It can be readily adapted for implementing with 
other anatomic parts, although this should be demonstrated 
in actual experiments. The proposed method has a promis-
ing role in correct symmetry-plane discovery and could be 
added in craniomaxillofacial preplanning software. Future 
research could be applied to use both CT and 3D facial scan 
images to explore a more precise symmetry plane. Further-
more, we are working on a new idea that the symmetry plane 
is calculated through an atlas-based algorithm to apply for 
patients with more complicated fractures.

Fig. 7  Symmetry plane computed for zygomatic arch fractured data resulting 
from the proposed algorithm (wide purple line). a Symmetry plane in axial 
view, b symmetry plane in coronal view, and c symmetry plane in 3D view
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